首页> 外文OA文献 >Towards numerical simulation of components of thermoacoustic devices with commercial CFD software: implementation of impedance boundary conditions and application to four different studies
【2h】

Towards numerical simulation of components of thermoacoustic devices with commercial CFD software: implementation of impedance boundary conditions and application to four different studies

机译:使用商用CFD软件进行热声器件组件的数值模拟:阻抗边界条件的实现及其在四个不同研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermoacoustic engines promise to be a cost effective and reliable alternative to traditional Stirling engines, as the function of the piston is fulfilled by an acoustic wave. For the design and development of thermoacoustic devices, the one-dimensional thermoacoustic equations are commonly used. However, to further improve the performance of these devices a better understanding of the flow field and the acoustic losses inside of thermoacoustic components is required. To gain further insight, commercial Computational Fluid Dynamics (CFD) software is used in this thesis, as CFD allows revealing the entire flow field with all its physical quantities in the respective component of the thermoacoustic device. Reducing the numerical study to individual components of thermoacoustic devices is only possible with dedicated acoustic boundary conditions. As these boundary conditions are not yet readily available in commercial CFD packages, their implementation into ANSYS Fluent is included within the scope of this work. The boundary conditions are validated successfully in one- and two-dimensional cases against analytical solutions from the low-reduced frequency approximation. Furthermore, the analytical solutions are used in order to derive the optimal numerical parameters for thermoacoustic simulations and to give general rules of thumb for the spatial and time discretization. In a second step these parameters are applied to the simulations of four different thermoacoustic cases in order to show that CFD can lead to a better understanding of phenomena that are not incorporated in the one-dimensional thermoacoustic equations.The first investigated component is the thermal buffer tube. Its aim is to provide thermal insulation between the hot heat exchanger and the secondary ambient heat exchanger while transmitting the acoustic power out of the hot zone. However, due to the interaction of the acoustic wave with the temperature gradient, a two-dimensional steady mass flux called acoustic streaming occurs, which leads to undesired thermal losses. Using the implemented ideal heat exchanger boundary condition, the two-dimensional streaming field inside the thermal buffer tube is revealed and the influence of the wall properties on the streaming pattern is estimated. The temperature field resulting from the different streaming patterns as well as the repercussions on the acoustic properties are shown. The second investigated component is the U-bend that feeds back the acoustic wave in a traveling wave device. In the scope of reducing the size of the thermoacoustic devices, the bend becomes increasingly sharp, introducing additional losses and reflection as well as a velocity component in the cross-direction, which is expected to influence nearby components such as heat exchangers. The influence of the geometric parameters of the bend on the flow field are investigated in this thesis. The deviations from the analytical solution are revealed and for even sharper bends the onset of vortex generation is given. In general, this study shows the strength of numerical CFD simulations in thermoacoustics, as a large geometric parameter space could be investigated, leading to an in-depth understanding of the underlying flow phenomena. The subsequent study in this thesis makes the link between the one-dimensional thermoacoustic equations and the full time domain CFD, as it shows how the accuracy of the results from the one-dimensional equations can be increased when data from CFD is used. In this work the thermoacoustic functions, which incorporate the three-dimensional effects in the one-dimensional thermoacoustic equations, are calculated from CFD for a reduced model of a stacked screen regenerator, leading to more realistic values of the thermoacoustic functions. It is shown that the arrangement of the screens has an effect on the heat transfer inside the regenerator, while the viscous effects stay the same. This study shows that not only large components like bends and the thermal buffer tube can be successfully simulated with CFD, but so can small scale geometries like the ones inside the regenerator. In the last thermoacoustic study within this work, the entrance effects in a stacked screen regenerator are investigated for different geometric variations. The mean temperature profile due to the non-linear entrance effects and the heat pumped at the end of the stacked screen regenerator are calculated. Furthermore, a one-dimensional time dependent heat equation is used in order to predict the changes in mean temperature. In this one-dimensional time dependent heat transfer equation the thermal thermoacoustic function is used in order to estimate the heat transfer coefficient between the regenerator and the fluid. The results compare well with the CFD results. It can be concluded from the four studies conducted within this thesis that the simulation of components of thermoacoustic devices with commercial CFD is possible and that they will contribute to a better understanding of the flow phenomena inside of the respective components. This work paves the way towards the in-depth investigation of other components within the field of thermoacoustics using CFD.
机译:热声发动机有望成为传统斯特林发动机的一种经济高效且可靠的替代产品,因为活塞的功能是通过声波来实现的。为了设计和开发热声装置,通常使用一维热声方程。但是,为了进一步改善这些设备的性能,需要更好地了解热声组件内部的流场和声损耗。为了获得进一步的了解,本文中使用了商用计算流体动力学(CFD)软件,因为CFD允许在热声设备的各个组件中显示整个流场及其所有物理量。只有在专用的声学边界条件下,才能将对热声设备各个组件的数值研究简化。由于在商用CFD软件包中尚不容易获得这些边界条件,因此将其实施到ANSYS Fluent中也包含在本工作范围之内。根据低降低频率近似的解析解,在一维和二维情况下成功地验证了边界条件。此外,分析解决方案用于导出热声模拟的最佳数值参数,并为空间和时间离散化提供一般经验法则。第二步,将这些参数应用于四种不同热声情况的模拟,以表明CFD可以更好地理解一维热声方程中未包含的现象。首先研究的组件是热缓冲器管。其目的是在将热功率传输出热区的同时,在热热交换器和辅助环境热交换器之间提供隔热。但是,由于声波与温度梯度的相互作用,会产生二维的稳定质量通量,称为声流,这会导致不希望的热损失。使用已实现的理想热交换器边界条件,揭示了热缓冲管内部的二维流场,并评估了壁特性对流型的影响。显示了由不同流模式产生的温度场以及对声学特性的影响。研究的第二个组件是U形弯曲,它在行波设备中反馈声波。在减小热声装置的尺寸的范围内,弯曲变得越来越尖锐,引入了额外的损耗和反射以及横向方向上的速度分量,这预计会影响附近的构件,例如热交换器。本文研究了弯头几何参数对流场的影响。揭示了与分析溶液的偏差,并且对于更陡的弯曲,给出了涡旋的产生。总的来说,这项研究表明了在热声中进行数值CFD模拟的优势,因为可以研究较大的几何参数空间,从而可以深入了解潜在的流动现象。本文的后续研究将一维热声方程与全时域CFD联系起来,因为它表明了使用CFD数据时如何提高一维方程的结果精度。在这项工作中,从CFD中为叠置筛式蓄热器的简化模型计算了将一维热声方程中包含了三维效应的热声函数,从而通过CFD计算得出了更真实的热声函数值。结果表明,滤网的布置对再生器内部的热传递有影响,而粘性作用保持不变。这项研究表明,不仅可以使用CFD成功模拟弯头和热缓冲管等大型部件,而且可以像蓄热器内部的小尺寸几何体一样成功进行模拟。在这项工作的最后一个热声研究中,针对不同的几何变化研究了叠置式筛网回热器的入口效应。计算归因于非线性进入效应的平均温度曲线以及在叠置筛网再生器末端抽出的热量。此外为了预测平均温度的变化,使用了一维时间相关的热方程。在此一维时间相关的热传递方程中,使用热热声函数来估算蓄热室与流体之间的热传递系数。结果与CFD结果很好地比较。从本文中进行的四项研究可以得出结论,使用商用CFD对热声设备的组件进行模拟是可能的,并且它们将有助于更好地理解各个组件内部的流动现象。这项工作为使用CFD深入研究热声学领域中的其他组件铺平了道路。

著录项

  • 作者

    Bühler, Simon;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号